

Pre-Trained Language Models for Image Generation

Miguel Domingo

midobal@prhlt.upv.es

Departamento de Sistemas Informáticos y Computación Universitat Politècnica de València

Tools and Applications of Artificial Intelligence

MIARFID, May 2, 2023

Outline

- 1. Introduction
- 2. Applications
- 3. Stable Diffusion
- 4. Controversy
- 5. Lab Session

Outline

1. Introduction

- 2. Applications
- 3. Stable Diffusion
- 4. Controversy
- 5. Lab Session

Goal

React to a text input (known as prompt) by generating new related images.

Example

Prompt: Pink elephants on parade.

Example

Image from Dumbo (1941).

Outline

1. Introduction

2. Applications

- Dall-e
- Midjourney
- Leonardo Al
- DreamFusion
- Adobe Firefly
- 3. Stable Diffusion

4. Controversy

Dall-e

- Developer: OpenAI (Ramesh et al., 2022).
- GPT-3 (Brown et al., 2020).
- Preventing harmful generation.
- Ensure content policy.
- Credit system.
- Beta no longer available.

Dall-e

Example

Pink elephants on parade.

Dall-e Example

More examples: https://openai.com/product/dall-e-2.

Dall-e

Bing Image Creator

- Based on Dall-e.
- Integrated into *Microsoft Edge* and other *Bing* products.

Dall-e

Bing Image Creator

Midjourney

- Developer: independent research lab (Midjourney, Inc.).
- Discord-based.
- Subscription plan.
- Beta no longer available.

Examples: https://www.midjourney.com/showcase/recent/.

Leonardo Al

- Game assets generation.
- Artists tools.
- Use of pre-trained models.
- Train custom models.
- Content production platform.

Examples: https://leonardo.ai/.

DreamFusion

- Developer: Google Research (Poole et al, 2022).
- 3D assets generation.
- Text-to-3D using 2D Diffusion.

Examples: https://dreamfusion3d.github.io/gallery.html.

Adobe Firefly

"Generative AI made for creators"

- Developer: Adobe.
- Trained on Adobe Stock images:
 - Openly license content.
 - Public domain.
- Designed to generate content safe for commercial use.
- To be integrated into Adobe products.

Adobe Firefly

Example

Adobe Firefly Image tools

- Context-aware image generation.
- Vector, brushes and textures generations from few words and sketches.
- Template generation.
- 3D modeling.

Examples:

https://www.adobe.com/sensei/generative-ai/firefly.html.

Adobe Firefly

- Text to color enhancements (e.g, "Make this scene feel warm and inviting"): change color schemes, time of day, or even the seasons.
- Advanced music and sound effects: generation of royalty-free custom sounds and music to reflect a certain feeling or scene.
- Stunning fonts, text effects, graphics, and logos: generation of subtitles, logos and title cards and custom contextual animations.
- Powerful script and B-roll capabilities: acceleration of production workflows to automatically create storyboards and pre-visualizations.
- Creative assistants and co-pilots: master new skills and accelerate processes from initial vision to creation and editing.

Examples:

https://blog.adobe.com/en/publish/2023/04/17/reimagining-video-audio-adobe-firefly.

Outline

1. Introduction

2. Applications

3. Stable Diffusion

- Introduction
- Fine-tuning
- ControlNet
- Prompt generation
- Video generation

4. Controversy

Introduction

- Developer: Stability AI (Rombach et al., 2022).
- Trained on LAION-5B (Schuhmann et al., 2022).
- Open source.

Example

Pink elephants on parade.

${\sf DreamBooth}$

- A technique to fine-tune diffusion models by injecting a custom subject to the model (Ruiz et al., 2022).
- Training time: ~ 1 hour.
- Model size: Gigabytes.

Approach

Art rendition

Input images

Vincent Van Gogh

Michelangelo

Rembrandt

Johannes Vermeer

Pierre-Auguste Renoir

Leonardo da Vinci

Text-guided view synthesis

Property modification

Color modification ("A [color] [V] car")

Input

Panda

Koala

Hippo

$\mathsf{DreamBooth}$

Accessorization

Input images

Chef Outfit

Witch Outfit

Ironman Outfit

Nurse Outfit

Purple Wizard Outfit

Superman Outfit

Police Outfit

Angel Wings

Low-Rank Adaptation (LoRA)

- Efficient adaptation strategy to fine-tune large language models (Hu et al., 2021).
- Freezes the weight of the pre-trained model.
- Fine-tunes the cross attention layers.
- The trick of LoRA is breaking a matrix into two smaller (low-rank) matrices.
- Training time: 25 minutes.
- Model size: Megabytes.
- Collection of models: https://civitai.com/.

Control human pose in Stable Diffusion

- ControlNet is a modified Stable Diffusion model (Zhang et al., 2023).
- It takes an additional input image and detects its outlines.
- This information is fed into the model as an additional conditioning.

Canny edge detection

Hough line maps

ControlNet HED maps

Scribble maps

Sketches

Fake scribbles

Human poses

Segmentation maps

Prompt Generation

Anatomy of a good prompt

- **Subject**: what you want to see in the image.
- Medium: the material used to make artwork.
- **Style**: artistic style of the image.
- Artist: to use a particular artist as a reference.
- Website: graphic websites such as Artstation and Deviant Art.
- **Resolution**: how sharp and detailed the image is.
- Additional details: such as sci-fi, stunningly beautiful, etc.
- Color: color keywords to control the overall color of the image.
- Lighting: lighting keywords can have a huge effect on how the image looks.

Examples: https://stable-diffusion-art.com/prompt-guide/.

Video Generation

- Deforum is a tool to create animation videos with Stable Diffusion.
- Example and tutorial: https://stable-diffusion-art.com/deforum/.

Outline

- 1. Introduction
- 2. Applications
- 3. Stable Diffusion
- 4. Controversy
- 5. Lab Session

Controversy

- Most models are trained with images scraped from the web, without paying attention to copyright.
- Some developers are creating the models for lucrative purposes.
- Some users are using the generated images for commercial and lucrative purposes.
- This is specially cumbersome for artists, whose personal styles are being "replicated" by the models.
- Overall, this is a delicate matter that needs to be address and legislated carefully.

Outline

- 1. Introduction
- 2. Applications
- 3. Stable Diffusion
- 4. Controversy
- 5. Lab Session

Lab Session

Stable Diffusion Fine-tuning with DreamBooth

https://github.com/midobal/sd-fine-tuning-practical-session

Bibliography

- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. In Advances in neural information processing systems, 33, 1877–1901.
- Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.
- Poole, B., Jain, A., Barron, J. T., & Mildenhall, B. (2022). Dreamfusion: Textto-3d using 2d diffusion. arXiv preprint arXiv:2209.14988.
- Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125.
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). Highresolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 10684– 10695.

Bibliography

- Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., & Aberman, K. (2022). DreamBooth: Fine Tuning Text-to-image Diffusion Models for Subject-Driven Generation. arXiv preprint arXiv:2208.12242.
- Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M., ... & Jitsev, J. (2022). Laion-5b: An open large-scale dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402.
- Stable Diffusion Art. https://stable-diffusion-art.com/.
- Zhang, L., & Agrawala, M. (2023). Adding conditional control to text-to-image diffusion models. arXiv preprint arXiv:2302.05543.